Publications
-
Weseler, L.; Löffelholz, M.; Osiewacz, J.; Turek, ,T.
Silver‐Based Supportless Membrane Electrode Assemblies for Electrochemical CO2 Reduction
Electrochemical Science Adv. (2024) e202400012
doi.org/10.1002/elsa.202400012Osiewacz, J.; Ellendorff, B.; Kunz, U.; Turek, ,T.
Best Practices and Common Pitfalls in Experimental Investigation of Electrochemical CO2 Reduction at Gas Diffusion Electrodes
J. Electrochem. Soc. 171 (2024) 103503
doi.org/10.1149/1945-7111/ad7f91Osiewacz, J.; Löffelholz, M.; Ellendorff, B.; Turek, T.
Modeling Mass Transfer Limitations Driven by Electrowetting in Electrochemical CO2 Reduction at Silver Gas Diffusion Electrodes
J. Power Sources 603 (2024) 234430
doi.org/10.1016/j.jpowsour.2024.234430Hoffmann, H.; Kutter, M.; Osiewacz, J.; Paulisch-Rinke, M. C.; Lechner, S.; Ellendorff, B.; Hilgert, A.; Manke, I.; Turek, T.; Roth, C.
Highly selective Ag foam gas diffusion electrodes for CO2 electroreduction by pulsed hydrogen bubble templation
EES Catalysis 2 (2024) 286-299,
doi.org/10.1039/D3EY00220A -
Maier, L. Kufferath-Sieberin, L. Pauly, L.; Hopp-Hirschler, M.; Gresser, G. T.; Nieken, U.
Constitutive Correlations for Mass Transport in Fibrous Media Based on Asymptotic Homogenization
Materials 16 (5) (2023) 2014
doi.org/10.3390/ma16052014Mahbub, M. A. A.; Junqeira, J. R. C.; Wang, X.; Dieckhöfer, S.; Seisel, S.; Das, D.; Schuhmann, W.
Dynamic Transformation of Functionalized Bismuth to Catalytically Active Surfaces for CO2 Reduction to Formate at High Current Densities
Adv. Funct. Mater. 33 (2023) 2307752
doi.org/10.1002/adfm.202307752Löffelholz, M.; Weidner, J.; Hartmann, J.; Ostovari, H.; Osiewacz, J.; Engbers, S.; Ellendorff, B.; Junqueira, J. R. C., Weichert, K.; von der Assen, N.; Schuhmann, W.; Turek, T.
Optimized Scalable CuB Catalyst with Promising Carbon Footprint for the Electrochemical CO2 Reduction to Ethylene
Sustainable Chemistry for Climate Action (2023),
doi.org/10.1016/j.scca.2023.100035Löffelholz, M.; Osiewacz, J.; Weseler, L.; Turek, T.
Enhancing Carbon Efficiency in Electrochemical CO2 Reduction at Silver Gas Diffusion Electrodes: The Effect of Acidic Electrolytes Explained via TFFA Modeling
Chem. Soc. (2023),
doi.org/10.1149/1945-7111/ad0ebaDorner, I.; Röse, P.; Krewer, U.
Dynamic vs. Stationary Analysis of Electrochemical Carbon Dioxide Reduction: Profound Differences in Local States
ChemElectroChem (2023),
doi.org/10.1002/celc.202300387Hoffmann, H.; Paulisch-Rinke, M. C.; Gernhard, M.; Jännsch, Y.; Timm, J.; Brandmeir, C.; Lechner, S.; Marschall, R.; Moos, R.; Manke, I.; Roth, C.
Multi-scale morphology characterization of hierarchically porous silver foam electrodes for electrochemical CO2 reduction
Communications Chemistry 6, Article number: 50 (2023),
doi.org/10.1038/s42004-023-00847-zBaumgartner, L. M.; Goryachev, A.; Koopman, C. I.; Franzen, D.; Ellendorff, B.; Turek, T.; Vermaas, D. A.
Electrowetting Limits Electrochemical CO2 Reduction in carbon-free Gas Diffusion Electrodes
Energy Adv. (2023),
doi.org/10.1039/D3YA00285CJunqueira, J. R. C.; Das, D.; Brix, A. C.; Dieckhöfer, S.; Weidner, J.; Wang, X.; Shi, J.; Schuhmann, W.
Simultaneous anodic and cathodic formate production in a paired electrolyzer by CO2 reduction and glycerol oxidation
ChemSusChem (2023), e202202349
doi.org/10.1002/cssc.202202349Wilde, P.; Özden, A.; Winter, H.; Quast, T.; Weidner, J.; Dieckhöfer, S.; Junqueira, J. R. C.; Metzner, M.; Peter, W.; Leske, W.; Öhl, D.; Bobrowski, T.; Turek, T.; Schuhmann, W.
Sprayed Ag gas-diffusion electrodes for the electrochemical reduction of CO2 to CO
Appl. Res. 2 (2023), e202200081
doi.org/10.1002/appl.202200081Milicic, T.; Sivasankaran, M.; Blümner, C.; Sorrentino, A.; Vidakovic-Koch, T.
Pulsed Electrolysis: Explained
Faraday Discussions (2023)
doi.org/10.1039/d3fd00030cZivkovic, L.A.; Kandaswamy, S.; Sivasankaran, M.; Al-Shaibani, M.A.S.; Ritschel, T.K.S.; Vidakovic-Koch, T.
Simulation and experimental files, datasets and equipment setup for "Nonlinear frequency response analysis of oxygen reduction reaction on silver in strong alkaline media"
Resipository Edmont (2023)
doi.org/10.17617/3.1GTTFEZivkovic, L.A.; Kandaswamy, S.; Sivasankaran, M.; Al-Shaibani, M.A.S.; Ritschel, T.K.S.; Vidakovic-Koch, T.
Nonlinear frequency response analysis of oxygen reduction reaction on silver in strong alkaline media
Electrochimica Acta (2023) 142175
doi.org/10.1016/j.electacta.2023.142175Osiewacz, J.; Löffelholz, M.; Weseler, L.; Turek, T.
CO poisoning of silver gas diffusion electrodes in electrochemical CO2 reduction
Electrochimica Acta 445 (2023) 142046
doi.org/10.1016/j.electacta.2023.142046Bienen, B.; Paulisch, M.; Mager, T.; Osiewacz, J.; Nazari, M.; Osenberg, M.; Ellendorff, B.; Turek, T.; Nieken, U.; Manke, I.; Friedrich, K.A.
Investigating the electrowetting of silver‐based gas‐diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods
Electrochemical Science Advances 3 (2023) e 2100158
doi.org/10.1002/elsa.202100158Wang, X.; He, W.; Shi, J.; Junqueira, J. R. C.; Zhang, J.; Dieckhöfer, S.; Seisel, S.; Das, D.; Schuhmann, W.
Ag-induced phase transition of Bi2O3 nanofibers for enhanced energy conversion efficiency towards formate in CO2 electroreduction
Chem. Asian J. 17 (2023) e202201165
doi.org/10.1002/asia.202201165 -
Tengattini, A.; Kardjilov, N.; Helfen, L.; Douissard, P.-A.; Lenoir, N.; Markötter, H.; Hilger, A.; Arlt, T.; Paulisch, M.; Turek, T.; Manke, I.
Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator
Optics Express 30 (9) (2022) 14461-14477
doi.org/10.1364/OE.448932Wang, X.; Tomon, C.; Bobrowski, T.; Wilde, P.; Junqueira, J. R. C.; Quast, T.; He, W.; Sikdar, N.; Weidner, J.; Schuhmann, W.
Gaining the freedom of scalable gas diffusion electrodes for the CO2 reduction reaction
ChemElectroChem 9 (2022) e202200675
doi.org/10.1002/celc.202200675Sikdar, N.; Junqueira, J. R. C.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Braun, M.; Aiyappa, H. B.; Seisel, S.; Andronescu, C.; Schuhmann, W.
Redox replacement of Ag on MOF-derived Cu/C-nanoparticles on gas diffusion electrodes for electrocatalytic CO2 reduction
Chem. Eur. J. 28 (2022) e202104249
doi.org/10.1002/chem.202104249Löffelholz, M.; Osiewacz, J.; Lüken, A.; Perrey, K.; Bulan, A.; Turek, T.
Modeling electrochemical CO2 reduction at silver gas diffusion electrodes using a TFFA approach
Chemical Engineering Journal 435 (2022) 134920
doi.org./10.1016/j.cej.2022.134920Hoffmann, H.; Paulisch, M; Gebhard, M.; Osiewacz, J.; Kutter, M.; Hilger, A.; Arlt, T.; Kardjilov, N.; Ellendorff, B.; Beckmann, F.
Developement of a Modular Operando Cell for X-ray Imaging of Strongly Absorbing Silver-Based Gas Diffusion Electrodes
Journal of The Electrochemical Society 169 (2022) 044508
doi.org/10.1149/1945-7111/ac6220Bienen, F.; Paulisch, M.C.; Mager, T.; Osiewacz, J.; Nazari, M.; Osenberg, M.; Ellendorff, B.; Turek, T.; Nieken, U.; Manke, I.; Friedrich, K.A.
Investigating the electrowetting of silver-basedgas-diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods
Electrochem. Sci. Adv.(2022) e2100158
doi.org/10.1002/elsa.202100158 -
Maier,L.; Scherle, M.; Hopp-Hirschler, M.;Nieken, U.
Effective transport parameters of porous media from 2D microstructure images
International Journal of Heat and Mass Transfer (2021) 175, 121371
doi.org/10.1016/j.ijheatmasstransfer.2021.121371Sichani, A.B.; Mager, T.; Mehring, C.
SIMULATION OF AIRLESS MODULATED 2D SMALL-SCALE/MEMS ATOMIZER USING VISCOUS POTENTIAL THEORY WITH GENERALIZED PRESSURE-CORRECTION
Atomization and Sprays (2021) 31 (2), 1-35
doi.org/10.1615/AtomizSpr.2020035523Paulisch, M. C.; Gebhard, M.; Franzen, D.; Hilger, A.; Osenberg, M.; Marathe, S.; Rau, C.; Ellendorff, B.; Turek, T.; Roth, C.; Manke, I.
Operando Synchrotron Imaging of Electrolyte Distribution in Silber-Based Gas Diffusion Electrodes During Oxygen Reduction Reaction in Highly Alkaline Media
ACS Appl. Energy Mater. (2021) 4, 7497-7503
doi.org/10.1021/acsaem.1c01524Junqueira, J. R. C.; O’Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Tilley, R. D.; Gooding, J. J.; Schuhmann, W.
Combining nanoconfinement in Ag core/porous Cu shell nanoparticles with gas diffusion electrodes for improved electrocatalytic carbon dioxide reduction
ChemElectroChem, 8 (2021) e202100906
doi.org/10.1002/celc.202100906Monteiro, M. C. O.; Dieckhöfer, S.; Bobrowski, T.; Quast, T.; Pavesi, D.; Koper, M. T. M.; Schuhmann, W.
Probing the local activity of CO2 reduction on gold gas diffusion electrodes: effect of the catalyst loading and CO2 pressure
Chem. Sci., 12 (2021) 15682-15690
doi.org/10.1039/D1SC05519DVidakovic-Koch, T.; Milicic, T.; Zivkovic, L.; Chan, H. S.; Krewer, Ulrike; Petkovska, M.
Nonlinear Frequency Response Analysis: A Recent Review and Perspectives
Current Opinion in Electrochemistry, 30 (2021) 100851
doi.org/10.1016/j.coelec.2021.100851Song, Y.; Junquiera, J. R. C.; Sikdar, N.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Seisel, S.; Masa, J.; Andronescu, C.; Schuhmann, W.
B-Cu-Zn Gas Diffusion Electrodes for CO2 Electroreduction to C2+ Products at High Current Densities
Angew. Chem. Int. Ed. 60 (2021) 9135-9141
doi/full/10.1002/anie.202016898Sikdar, N.; Junquiera, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Öhl, D.; Andronescu, C.; Schuhmann, W.
A metal-organic framework derived CuxOyCz catalyst for electrochemical CO2 reduction and impact of local pH change
Angew. Chem. Int. Ed. 60 (2021) 23427-23434
doi.org/10.1002/anie.202108313Sikdar, N.; Junquiera, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Öhl, D.; Andronescu, C.; Schuhmann, W.
Ein MOF-basierter CuxOyCz-Katalysator für die elektrochemische CO2-Reduktion und die Auswirkungen der lokalen pH-Änderung
Angew. Chem. 133 (2021) 23616-23624
doi/abs/10.1002/ange.202108313Franzen, D.; Krause, C.; Turek, T.
Cover Feature: Experimental and Model-Based Analysis of Electrolyte Intrusion Depth in Silver-Based Gas Diffusion Electrodes (ChemElectroChem 12/2021)
ChemElectroChem 8 (2021) 2151-2151
doi/10.1002/celc.202100620Franzen, D.; Krause, C.; Turek, T.
Experimental and Model-Based Analysis of Electrolyte Intrusion Depth in Silver-Based Gas Diffusion Electrodes
ChemElectroChem 8 (2021) 2186-2192
doi.org/10.1002/celc.202100278Etzold, B.J.M.; Krewer, U.; Thiele, S.; Dreizler, A.; Klemm, E.; Turek, T.
Understanding the Activity Transport Nexus in water and CO2 electrolysis: State of the art, challenges and perspectives
Chem. Eng. J. 424 (2021) 130501
doi.org/10.1016/j.cej.2021.130501Röhe, M.; Franzen, D.; Kubannek, F.; Ellendorff, B.; Turek, T.; Krewer, U.
Revealing the Degree and Impact of Inhomogeneous Electrolyte Distributions on Silver Based Gas Diffusion Electrodes
Electrochim. Acta (2021)
doi.org/10.1016/j.electacta.2021.138693Badie, S. A.; Mager, T.; Mehring, C.
Simulation of Airless Modulated 2D Small-Scale/MEMS Atomizer using Viscous Potential Theory with Generalized Pressure-Correction
Atomization and Sprays 31(2):1-35 (2021)
doi.org/10.1615/AtomizSpr.2020035523Franzen, D.; Paulisch, M. C.; Ellendorff, B.; Manke, I.; Turek, T.
Spatially resolved model of oxygen reduction reaction in silver-based porous gas-diffusion electrodes based on operando measurements
Electrochimica Acta 375 (2021) 137976
doi.org/10.1016/j.electacta.2021.137976Andronescu, C.; Masa, J.; Tilley, R. D.; Gooding, J. J.; Schuhmann, W.
Electrocatalysis in confined space
Current Opinion in Electrochemistry 25 (2021) 100644
doi.org/10.1016/j.coelec.2020.100644Medina, D.; Löffler, T.; Morales, D. M.; Masa, J.; Bobrowski, T.; Barwe, S.; Andronescu, C.; Schuhmann, W.
Recovering activity of anodically challenged oxygen reduction electrocatalysts by means of reductive potential pulses
Electrochemistry Communications 124 (2021) 106960
doi.org/10.1016/j.elecom.2021.106960Dieckhöfer, S.; Öhl, D.; Junquiera, J. R. C.; Quast, T.; Turek, T.; Schuhmann, W.
Probing the local reaction environment during high turnover carbon dioxide reduction with Ag-based gas diffusion electrodes
Chem. Eur. J. 27 (2021) 5906-5912
doi.org/10.1002/chem.202100387 -
Arlt, T.; Liebert, M.; Paulisch, M.; Lüdeking, I.; Bergbreiter, C.; Jörissen, L.; Manke, I.
Multi-scale Analysis and Phase Segmentation of FIB and X-ray Tomographic Data of Electrolyzer Electrodes Using Machine Learning Algorithms
ECS Trans. 97, (7) (2020) 639
doi.org/10.1149/09707.0639ecstŽivković, L.A.; Kandaswamy, S.; Petkovska, M.; and Vidaković-Koch, T.
Evaluation of Electrochemical Process Improvement Using the Computer-Aided Nonlinear Frequency Response Method: Oxygen Reduction Reaction in Alkaline Media.
Frontiers in Chemistry 8, (981) (2020)
doi.org/10.3389/fchem.2020.579869Kunz, P.; Paulisch, M.; Osenberg, M.; Bischof, B.; Manke, I.; Nieken, U.
Prediction of Electrolyte Distribution in Technical Gas Diffusion Electrodes: From Imaging to SPH Simulations.
Transp Porous Med 132, 381–403 (2020)
doi.org/10.1007/s11242-020-01396-yGebhard, M.; Tichter, T.; Franzen, D.; Paulisch, M.C.; Schutjajew, K.; Turek, T.; Manke, I.; Roth, C.
Improvement of oxygen-depolarized cathodes in highly alkaline media by electrospinning of poly(vinylidene fluoride) (PVDF) barrier layers
ChemElectroChem 7 (2020) 830-837
doi.org/10.1002/celc.201902115 -
Röhe, M.; Botz, A.; Franzen, D.; Kubannek, F.; Ellendorff, B.; Öhl, D.; Schuhmann, W.; Turek, T.; Krewer, U.
The Key Role of Water Activity for the Operating Behavior and Dynamics of Oxygen Depolarized Cathodes
ChemElectroChem 6 (2019) 5671-5681
doi.org/10.1002/celc.201901224Paulisch, M.; Gebhard, M.; Franzen, D.; Hilger, A.; Osenberg, M.; Kardjilov, N.; Ellendorff, B.; Turek, T.; Roth, C.; Manke, I.
Operando Laboratory X-Ray Imaging of Silver-Based Gas Diffusion Electrodes during Oxygen Reduction Reaction in Highly Alkaline Media
Materials 12(17) (2019) 2686
doi.org/10.3390/ma12172686Madzharova F.; Öhl D.; Junqueira J.; Schuhmann W.; Kneipp J.
Plasmon enhanced two-photon probing with gold and silver nanovoid structures
Advanced Optical Materials (2019) 1900650
doi.org/10.1002/adom.201900650Kandaswamy, S.; Sorrentino, A.; Borate, S.; Živković, L.; Petkovska M.; Vidaković-Koch, T.
Oxygen reduction reaction on silver electrodes under strong alkaline conditions
Electrochimica Acta 320 (2019)
doi.org/10.1016/j.electacta.2019.07.028Kubannek, F.; Turek, T.; Krewer, U.
Modeling Oxygen Gas Diffusion Electrodes for Various Technical Applications
Chemie Ingenieur Technik 91 (2019) 720-733
doi.org/10.1002/cite.201800181Franzen, D.; Ellendorff, B.; Paulisch, M.; Hilger, A.; Osenberg, M; Manke, I.; Turek, T.
Influence of binder content in silver-based gas diffusion electrodes on pore system and electrochemical performance
Journal of Applied Electrochemistry 49 (7) (2019) 705-713
doi.org/10.1007/s10800-019-01311-4Gebhard, M.; Paulisch, M.; Hilger, A.; Franzen, D.; Ellendorff, B.; Turek, T.; Manke, I.; Roth, C.
Design of an In-Operando Cell for X-Ray and Neutron Imaging of Oxygen-Depolarized Cathodes in Chlor-Alkali Electrolysis
Materials 12(8) (2019) 1275
doi.org/10.3390/ma12081275Kunz P.; Hopp‐Hirschler, M.; Nieken U.
Simulation of Electrolyte Imbibition in Gas Diffusion Electrodes
Chemie Ingenieur Technik 91 (2019) 883-888
doi.org/10.1002/cite.201800202Röhe, M.; Kubannek, F.; Krewer, U.
Processes and their Limitations in Oxygen Depolarized Cathodes: A Dynamic Model-Based Analysis
ChemSusChem 12 (2019) 2373-2384
doi.org/10.1002/cssc.201900312Öhl, D.; Franzen, D.; Paulisch, M.; Dieckhöfer, S.; Barwe, S.; Andronescu, C.; Manke, I.; Turek, T.; Schuhmann, W.
Catalytic Reactivation of Industrial Oxygen Depolarized Cathodes by in‐situ Generation of Atomic Hydrogen
ChemSusChem 12 (2019) 2732-2739
doi.org/10.1002/cssc.201900628Masa, J.; Barwe, S.; Andronescu, C.; Schuhmann, W.
On the theory of electrolytic dissociation, the greenhouse effect, and activation energy in (electro)catalysis: A tribute to Svante Augustus Arrhenius
Chem. Eur. J. 25 (2019) 158-166
doi.org/10.1002/chem.201805264Neumann, M.; Osenberg, M.; Hilger, A.; Franzen, D.; Turek, T.; Manke, I.; Schmidt, V.
On a pluri-Gaussian model for three-phase microstructures, with applications to 3D image data of gas-diffusion electrodes
Computational Materials Science 156 (2019) 325-331
doi.org/10.1016/j.commatsci.2018.09.033 -
Öhl, D.; Kayran, Y.U.; Junqueira, J.R.C.; Eßmann, V; Bobrowski, T.; Schuhmann, W
Optimized Ag Nanovoid Structures for Probing Electrocatalytic Carbon Dioxide Reduction Using Operando Surface-Enhanced Raman Spectroscopy
Langmuir 34 (2018) 12293-12301
dx.doi.org/10.1021/acs.langmuir.8b02501Wilde, P.; Quast, T.; Barike Aiyappa, H.; Chen, Y.-T.; Botz, A.; Tarnev, T.; Marquitan, M.; Feldhege, S.; Lindner, A.; Andronescu, C.; Schuhmann, W
Towards reproducible fabrication of nanometre-sized carbon electrodes: optimisation of automated nanoelectrode fabrication by means of transmission electron microscopy
ChemElectroChem 5 (2018) 3083-3088
doi.org/10.1002/celc.201800600Löffler, T.; Wilde, P.; Öhl, D.; Chen, Y.-T.; Tschulik, K.; Schuhmann, W
Evaluation of the intrinsic catalytic activity of nanoparticles without prior knowledge of the mass loading
Faraday Discuss. 210 (2018) 317-332
dx.doi.org/10.1039/c8fd00029hBotz, A.; Clausmeyer, J.; Öhl, D.; Tarnev, T.; Franzen, D.; Turek, T.; Schuhmann, W.
Local Activities of Hydroxide and Water Determine the Operation of Ag‐Based Oxygen Depolarized Cathodes
Angew. Chem. Int. Ed. (2018) 12285-12289
doi.org/10.1002/anie.201807798Botz, A.; Clausmeyer, J.; Öhl, D.; Tarnev, T.; Franzen, D.; Turek, T.; Schuhmann, W.
Die lokalen Aktivitäten von Hydroxidionen und Wasser bestimmen die Funktionsweise von auf Silber basierenden Sauerstoffverzehrkathoden
Angew. Chem. 130 (2018) 12465-12469
doi.org/10.1002/ange.201807798Kunz, P.; Hassanizadeh, S. M.; Nieken, U.
A Two-Phase SPH Model for Dynamic Contact Angles Including Fluid–Solid Interactions at the Contact Line
Transp Porous Med 122 (2018) 253–277
dx.doi.org/10.1007/s11242-018-1002-9Öhl, D.; Clausmeyer, J.; Barwe, S.; Botz, A.; Schuhmann, W.
Oxygen Reduction Activity and Reversible Deactivation of Single Silver Nanoparticles during Particle Adsorption Events
ChemElectroChem 5 (2018) 1886-1890
dx.doi.org/10.1002/celc.201800094Sievers, G.; Vidakovic Koch, T.; Walter, C.; Steffen, F.; Jakubith, S.; Kruth, A.; Hermsdorf, D.; Sundmacher, K.; Brüser, V.
Ultra-low loading Pt-sputtered gas diffusion electrodes for oxygen reduction reaction
Journal of Applied Electrochemistry 48 (2018) 221-232
doi.org/10.1007/s10800-018-1149-7 -
Clausmeyer, J.; Botz, A.; Öhl, D.; Schuhmann, W.
The oxygen reduction reaction at the three-phase boundary: nanoelectrodes modified with Ag nanoclusters
Faraday Discuss. 193 (2016) 241-250
dx.doi.org/10.1039/C6FD00101GClausmeyer, J.; Wilde, P.; Ventosa, E.; Tschulik, K.; Schuhmann, W.
Detection of individual nanoparticle impacts using etched carbon nanoelectrodes
Electrochem. Commun. 73 (2016) 67-70
dx.doi.org/10.1016/j.elecom.2016.11.003 -
Schröder, D.; Arlt, T.; Krewer, U.; Manke, I.
Analyzing Transport Paths in the Air Electrode of a Zinc Air Battery using X-ray Tomography
Electrochemistry Communications 40 (2014) 88-91
dx.doi.org/10.1016/j.elecom.2014.01.001Zielke, L.; Hutzenlaub, T.; Wheeler, D. R.; Manke, I.; Arlt, T.; Paust, N.; Zengerle, R.; Thiele, S.
A Combination of X-ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li-ion Battery Cathodes
Advanced Energy Materials 4 (2014) 1301617
dx.doi.org/10.1002/aenm.201301617Vidaković-Koch, T.; Mittal, V. K.; Do, T. Q. N.; Varničić, M.; Sundmacher, K.
Application of electrochemical impedance spectroscopy for studying of enzyme kinetics
Electrochimica Acta 110 (2013) 94-104
dx.doi.org/10.1016/j.electacta.2013.03.026Zeradjanin, A. R.; Ventosa, E.; Bondarenko, A. S.; Schuhmann, W.
Evaluation of the catalytic performance of gas evolving electrodes using local electrochemical noise measurements
ChemSusChem 5 (2012) 1905-1911
dx.doi.org/10.1002/cssc.201200262Dwenger, S.; Eigenberger, G.; Nieken, U.
Measurement of Capillary Pressure–Saturation Relationships Under Defined Compression Levels for Gas Diffusion Media of PEM Fuel Cells
Transport in Porous Media 91 (2012) 281-294
dx.doi.org/10.1007/s11242-011-9844-4Wolz, A.; Zils, S.; Ruch, D.; Kotov, N.; Roth, C.; Michel, M.
Incorporation of Indium Tin Oxide Nanoparticles in PEMFC Electrodes
Advanced Energy Materials 2 (2012) 569-574
dx.doi.org/10.1002/aenm.201100711Moussallem, I.; Pinnow, S.; Turek, T.
Development of high-performance silver-based gas-diffusion electrodes for chlor-alkali electrolysis with oxygen depolarized cathodes
Chemical Engineering & Processing: Process Intensification 52 (2012) 125-131
dx.doi.org/10.1016/j.cep.2011.11.003Pinnow, S.; Chavan, N.; Turek, T.
Thin-film flooded agglomerate model for silver-based oxygen depolarized cathodes
Journal of Applied Electrochemistry 41 (2011) 1053-1064
dx.doi.org/10.1007/s10800-011-0311-2Markötter, H., Manke, I.; Krüger, P.; Haußmann, J.; Klages, M.; Arlt, T.; Riesemeier, H.; Hartnig, C.; Scholta, J.; Banhart, J.
Investigation of 3D water transport paths in gas diffusion layers by combined in-situ X-ray radiography and tomography
Electrochemistry Communications 13 (2011) 1001-1004
dx.doi.org/10.1016/j.elecom.2011.06.023Keller, F.; Nieken, U.
Application of Smoothed Particle Hydrodynamics to Structure Formation in Chemical Engineering, Meshfree Methods for Partial Differential Equations V
dx.doi.org/10.1007/978-3-642-16229-9_8